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Chapter 9. The Atomic Nucleus 
 

Notes: 
• Most of the material in this chapter is taken from Thornton and Rex, Chapters 12 

and 13. 

9.1 Nuclear Properties 
Atomic nuclei are composed of protons and neutrons, which are referred to as nucleons. 
Although both types of particles are not fundamental or elementary, they can still be 
considered as basic constituents for the purpose of understanding the atomic nucleus. 
Protons and neutrons have many characteristics in common. For example, their masses 
are very similar with 1.0072765 u  (938.272 MeV) for the proton and 1.0086649 u  
(939.566 MeV) for the neutron. The symbol ‘u’ stands for the atomic mass unit defined 
has one twelfth of the mass of the main isotope of carbon (i.e., 12C ), which is known to 
contain six protons and six neutrons in its nucleus. We thus have that  
 

 1 u = 1.66054 ×10−27 kg
= 931.49 MeV/c2.

  (9.1) 

 
Protons and neutrons also both have the same intrinsic spin, but different magnetic 
moments (see below). Their main difference, however, pertains to their electrical charges: 
the proton, as we know, has a charge of +e , while the neutron has none, as its name 
implies.  
 
Atomic nuclei are designated using the symbol 
 
 Z

A XN ,   (9.2) 
 
with Z, N  and A  the number of protons (atomic element number), the number of 
neutrons, and the atomic mass number ( A = Z + N ), respectively, while X  is the 
chemical element symbol. It is often the case that Z  and N  are omitted, when there is no 
chance of confusion. Although the number of protons Z  is fixed for a given element, the 
number of neutrons can vary. The different versions of an element with different N  (or 
A ) are called isotopes, which will arise with different frequencies. For example, carbon 
naturally occurs under the following forms and abundances: 
 

 

12C: 98.93%
13C: 1.07%
14C: trace,

  (9.3) 

 
where ‘trace’ means something like ‘barely measurable.’ Indeed, 14C  occurs naturally 
with an abundance of 1 part per trillion (i.e., 1×10−10% ). Furthermore, although 12C  and 
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13C  are stable, 14C  is radioactive (i.e., unstable) and decays to 14N  with a half-life of 
5730 years. Finally, any nuclear species is called a nuclide, while those with the same 
number of neutrons are isotones (e.g., 6

14C8  and 7
15N8 ) and isobars have the same number 

of nucleons (e.g., 8
18O10  and 9

18F9 ).        

9.1.1 Nuclear Sizes and Shapes  
To a good approximation nuclei are spherical, with their volume scaling with their mass 
or nuclide number. Accordingly, the nuclear radius is found to be 
 
 R = r0A

1 3,   (9.4) 
 
with1  r0  1.2 ×10

−15m . It follows that if we consider the nucleus to be a sphere of 
volume V = 4πR3 3 , then the average nuclear mass density is 
 

 

ρm = A ⋅u
V

= 3u
4πr0

3

= 2.3×1017kg/m3,

  (9.5) 

  
which is approximately 14 orders of magnitude greater than for ordinary matter. 
 
Except for the lightest nuclei, the charge distribution is also found to be approximately 
spherical with 
 

 ρ r( ) = ρ0
1+ e r−R( ) a ,   (9.6) 

                                                
1 A femtometer (fm) equals 10−15m . Conveniently, a fermi (fm) is also used for that unit.   

Figure 1 – The normalized nuclear charge 
density for an  nuclide.  
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with ρ0  the central nuclear charge density, R  the radius at which the has dropped to half 
its central density, and t = 4.4a  the surface thickness measured from 90%  to 10%  of the 
central density. An example, for A = 150 , is shown in Figure 1.  
 
Exercises 
 
1. What is the probability of finding a 1s1  electron in a hydrogen atom inside the nucleus 
(proton)? 
 
Solution. 
 
We know from the material covered in Chapter 7 that the 1s1  orbital has the wave 
function 
 

 ψ 100 r( ) = 1
πa0

3
e−r a0 .   (9.7) 

 
We therefore need to calculate the following 
 

 

P r ≤ r0( ) = ψ 100 r( ) 2 r2 sin θ( )dr
0

r0∫ dθ
0

π

∫ dφ
0

2π

∫
= 4π ψ 100 r( ) 2 r2 dr

0

r0∫
= 4
a0
3 e−2r a0r2 dr

0

r0∫ ,

  (9.8) 

 
which since r0 a0 ≈ 2 ×10

−6  is approximated by  
 

 

 

P r ≤ r0( )  4
a0
3 r2 dr

0

r0∫


4
3

r0
a0

⎛
⎝⎜

⎞
⎠⎟

3

≈10−17.

  (9.9) 

 
Although this is an exceedingly small value, it is not zero and there is a probability that 
the electron will be found within the nucleus.  

9.1.2 The Intrinsic Spin and Magnetic Moment 
Both the neutron and proton are fermions that, like the electron, have a spin s = 1 2 . The 
associated magnetic moments, however, are much weaker than that of the electron, owing 
to their much greater mass. As we saw in Chapter 7 the electron intrinsic magnetic 
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moment is proportional to the Bohr magneton  µB = e 2me( ) , and therefore inversely 
proportional to its mass. For nucleons, the pertinent mass is that of the proton mp  (the 
neutron mass would also work) and the elemental magnetic moment is the nuclear 
magneton   
 

 
 
µN = e

2mp

.  (9.10) 

 
Since the proton has a positive electric charge (i.e., +e ) we would expect its intrinsic 
magnetic moment to have the opposite sign of that of the electron. This is indeed what is 
found with µp = 2.79µN . It is somewhat surprising, however, that it does not simply scale 
with the ratio −me mp  since µe = −1.00116µB . This should serve as a warning on the 
limitations and dangers of using the classical model of a charge spinning about an axis 
through its centre to explain the intrinsic spin. This is made even more obvious when 
considering the intrinsic magnetic moment of the neutron µn = −1.91µN , which we would 
naively expect to be zero on the account of its electrical neutrality. This result is a 
reflection of the fact that the neutron is not an elementary particle, but made-up of more 
fundamental components (quarks) that do possess electrical charges. We could then 
expect a non-zero intrinsic magnetic moment if the charge distribution is not uniform 
within the neutron. 

9.2 The Deuteron 
The deuteron is the nucleus of an isotope of hydrogen, i.e., the deuterium 2H  (or D ; it 
has an abundance of 0.0145% , to be compared with 99.985%  for 1H ); it is composed of 
a proton and a neutron. The mass of a deuterium atom is measured to be 2.014102 u , 
which is slightly more than the mass of the deuteron nuclide md = 2.013553 u ; the 
difference between the two, i.e., 0.000549 u, is basically that of the electron. On the other 
hand, the deuteron mass is slightly more than the sum of the proton and neutron masses. 
This is to be expected, as the energy that binds the proton and neutron into a deuteron 
must be negative (just like the energy binding the electron to the proton in the hydrogen 
atom is also negative at −13.6 eV ). If we denote the binding energy by B 2H( ) , then we 
can write 
 

 md = mp +mn −
B 2H( )
c2

,   (9.11) 

 
or if we add the electron mass on both sides of equation (9.11) (neglecting the small 
electron binding energy)   
 

 M 2H( ) = mn +M
1H( )− B

2H( )
c2

,   (9.12) 
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with M Z
A XN( )  the atomic mass of Z

A XN . Equations (9.11) and (9.12) are also easily 
understood from the principle of conservation of energy, since, considering equation 
(9.11), separating the proton and neutron would require the “injection” of an energy equal 
to the binding energy. Inserting the masses M 1H( ) = 1.007825 u , M 2 H( ) = 2.014102 u , 
and md = 2.013553 u  in equation (9.12) yields   
 
 B 2 H( ) = 2.224 MeV.   (9.13) 
 
We now readily see that the nuclear binding energy is several orders of magnitudes 
greater than that tying an electron to a nucleus (e.g., 13.6 eV for hydrogen). Equation 
(9.12) can be generalized to  
 
 B Z

A XN( ) = Nmn + ZM
1H( )−M Z

A XN( )⎡⎣ ⎤⎦c
2   (9.14) 

 
for the binding energy of nucleus Z

A XN , which is defined as the energy needed to break it 
into free neutrons and protons. A nucleus is said to be stable against dissociation into 
free neutrons and protons if the binding energy is positive. 
 
We note from equation (9.13) that the amount of energy needed break a deuteron is on 
the same order as that of a gamma ray photon. It follows that binding energies can be 
determined experimentally through photodisintegration or photonuclear reaction by 
bombarding nuclides with incident gamma ray photons and measuring the properties of 
the disintegration products.  
 
Exercises 
 
2. Consider the scattering of gamma rays on a deuteron, which leads to its break up 
according to 
 
 γ + d→ p + n.   (9.15) 
 
Using the conservations of energy and linear momentum, verify that the minimum photon 
energy needed for this reaction to take place is approximately equal to the binding energy 
of the deuteron nuclide Bd = 2.224 MeV . Assume that the speed of the proton and 
neutron after scattering are highly non-relativistic (i.e.,  vp,vn  c ).  
 
Solution. 
 
The linear momentum of an incident photon is p  and its energy  ω = pc , with p = p . 
If we assume that  vp,vn  c , then the equations for the conservation of energy and linear 
momentum simplify to  
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pc +mdc

2 = mpc
2 +mnc

2 + 1
2
mpvp

2 + 1
2
mnvn

2

p = mpvp +mnvn.
  (9.16) 

 
We now square the last of these equations to get 
 
 p2 = mp

2vp
2 +mn

2vn
2 + 2mpmnvp ⋅vn,   (9.17) 

 
but if we are looking for the minimum photon energy, then we must find the case where 
the proton and neutron speeds are also minimum. Since  mp  mn  this will happen when 

 vp  vn  because then  vp ⋅vn  vp
2  vn

2 > 0 , and therefore vp
2  and vn

2  are minimized for a 

given p2 . With these approximations for the equalities of the masses and velocities 
equation (9.17) can be written as 
 

 p2 = 2md
1
2
mpvp

2 + 1
2
mnvn

2⎛
⎝⎜

⎞
⎠⎟ .   (9.18) 

 
We also know, however, from equation (9.12) that md = mn +mp − Bd c2  or, with a slight 

rearrangement, mn +mp( )c2 = mdc
2 + Bd , which upon insertion with equation (9.18) in 

the first of equations (9.16) yields 
 
 p2 − 2mdcp + 2mdBd = 0.  (9.19) 
 
This is a simple quadratic equation that is easily solved to give, after expanding the 
solution in a Taylor series,   
 

 
 
p  Bd

c
1+ Bd
2mdc

2

⎛
⎝⎜

⎞
⎠⎟
,   (9.20) 

 
which when using  ω = pc  becomes 
 

 
 
ωmin  Bd 1+

Bd
2mdc

2

⎛
⎝⎜

⎞
⎠⎟
,   (9.21) 

 
which is approximately equal to Bd . This is the minimum photon energy needed for 
photodisintegration of the deuteron. 
 
3. The intrinsic magnetic moment of the deuteron is experimentally determined to be 
0.86µN . Given the known corresponding values of 2.79µN  and −1.91µN  for the proton 
and neutron, respectively, what would you deduce the spin of the deuteron to be? 
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Solution.  
 
Interestingly, we note that  
 

 
µp + µn = 0.88µN

≈ 0.86µN,
  (9.22) 

 
The closeness of these two values suggests that the spins of the proton and neutron are 
aligned (i.e., parallel). Since these two spins are s = 1 2  we would expect that s = 1  for 
the deuteron; this is indeed verified experimentally. 

9.3 Nuclear Forces 
Scattering experiments using neutrons and protons show that the nuclear interaction 
acting between nucleons yields the functional forms displayed in Figure 2. Both curves 
have a deep negative well of width of approximately 3 fm. This negative potential 
implies that the nuclear force is attractive within that region. On the other hand, the 
strong positive reversal as we move on the left of that well at distances less than 
approximately 0.5 fm tells us that the force are strongly repulsive when nucleons get 
closer than that distance. We already know that a given nucleon has a radius and a charge 
distribution of about 1 fm (see equations (9.4) and (9.6)), which, when combined with the 
aforementioned width of the well, imply that two nucleons with centers separated by less 

Figure 2 – The shape of the potentials measured from 
neutron-proton and proton-proton scattering 
experiments. The deep negative wells are due to the 
strong nuclear force, while the positive “bump” on the 
proton-proton potential is due to Coulomb repulsion.  
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than 2 or 3 fm will interact through the nuclear force. From the proton-proton potential 
energy curve in Figure 2 we find that the Coulomb interaction becomes important for 
distances greater than approximately 3 fm; this is seen from the “bump” on the right of 
the negative well. Otherwise, the nuclear force is independent of electric charges.  

9.4 Nuclear Stability 
We saw with equation (9.14) for the binding energy of a nuclide that it is stable against 
dissociation into free neutrons and protons if this energy is positive. But this does not 
guarantee that it is stable in the absolute sense. That is, stability against dissociation into 
free neutrons and protons does not imply that the nucleus of mass A = Z + N  cannot 
decay into another combination of two nuclei totalling the same number of nucleons. In 
other words, a nucleus containing A  is stable only if its mass is less than that of any 
other combination of A  nucleons. Mathematically this is expressed with 
 
 B = M R( ) +M S( )−M Z

A XN( )⎡⎣ ⎤⎦c
2   (9.23) 

 
for the binding energy of the nucleus Z

A XN  against dissociation into the nuclei R  and S . 
This equation is applicable to any potential decay of a nucleus. It is important to realize, 
however, that it does not alone regulate whether or not a nucleus is unstable to a given 
dissociation. For example, the binding energy could be negative for a particular reaction 
that otherwise may be disallowed for other reasons (e.g., conservation of spin or other 
angular momenta). 
 
Exercises    
 
4. The main isotope of beryllium ( 4

9 Be ) has an atomic mass of nine. One could wonder 
why an equal number of neutrons and protons, for a total mass of eight, is not allowed. 
First calculate the binding energy of 4

8 Be , and then its stability to dissociation into two 
distinct alpha particles (i.e., twice 2

4He ). 
 
Solution. 
 
To solve this problem we need the following nuclide masses M 4

8 Be( ) = 8.005305 u , 

M 2
4 He( ) = 4.002603 u , M 1H( ) = 1.007825 u  and mn = 1.008665 u . The binding energy 

of 4
8 Be  is calculated using equation (9.14) 

 

 

B 4
8 Be( ) = 4mn + 4M 1H( )−M 4

8 Be( )⎡⎣ ⎤⎦c
2

= 4 1.008665 u( ) + 4 1.007825 u( )− 8.005305 u⎡⎣ ⎤⎦c
2 931.5 MeV

c2u
⎛
⎝⎜

⎞
⎠⎟

= 56.5 MeV.

  (9.24) 
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The binding energy is positive and 4
8 Be  is therefore stable against break up into free 

neutrons and protons. But if we use equation (9.23) to find the binding of this nucleus 
against dissociation into two alpha particles we have 
 
  

 

B 4
8 Be→ 2α( ) = 2M 2

4 He( )−M 4
8 Be( )⎡⎣ ⎤⎦c

2

= 2 4.002603 u( )− 8.005305 u⎡⎣ ⎤⎦c
2 931.5 MeV

c2u
⎛
⎝⎜

⎞
⎠⎟

= −0.093 MeV.

  (9.25) 

 
This binding energy is negative and thus explains why 4

8 Be  is unstable and cannot be 
observed in nature as a stable, or the main isotope of beryllium. 
 
5. (Prob. 61, Ch. 12 in Thornton and Rex.) Since nuclei contain in general several protons 
it follows that the nuclear force that binds nuclei must be able to overcome the Coulomb 
interaction between protons. Therefore, show that the total Coulomb self-energy of a 
sphere of radius R  containing a charge Ze  evenly distributed throughout the sphere is 
given by  
 

 ΔECoul =
3
5

Ze( )2
4πε0R

.   (9.26) 

 
Solution. 
 
We know that interaction energy of a charge dq  located at a radius r  from a spherical 
charge distribution of total charge Q  is as if it was punctual and located at r = 0 ; this 
interaction energy is then 
 

 dE = Qdq
4πε0r

.   (9.27) 

        
This equation sets the energy of the charge dq  to zero at infinity, which we are free to 
choose, as a potential energy can only be specified up to an arbitrary constant. When the 
charge Q  is a uniform sphere of radius r , then its charge density ρ  is constant such that    
 

 Q = 4
3
πr3ρ.  (9.28) 

 
Likewise, we could consider dq  to be just a small elemental charge of a spherical shell or 
radius r  of the same density 
 
 dq = ρr2 sin θ( )drdθdφ.   (9.29) 
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Inserting equations (9.28) and (9.29) into equation (9.27) we have   
 

 dE = ρ2

3ε0
r4 sin θ( )drdθdφ,   (9.30) 

 
The energy needed to bring a shell of charge dq  from infinity to the surface of a sphere 
of similar charge density and radius r  is therefore 
 

 

dEshell = dE
0

π

∫0

2π

∫
= ρ2

3ε0
r4dr sin θ( )dθ dφ

0

π

∫0

2π

∫

= 4π
3ε0

ρ2r4dr.

  (9.31) 

 
We can then consider the self-energy of a sphere of uniform density to be as if assembled 
from spherical shells of charge density ρ  successively put one on top of the other. If the 
final sphere is of radius R , then we must integrate equation (9.31) from 0 to R . That is, 
 

 
ECoul =

4π
3ε0

ρ2 r4 dr
0

R

∫

= 4π
15ε0

ρ2R5,
  (9.32) 

 
which, upon inserting equation (9.28) for the charge density while substituting r→ R  
and Q = Ze , becomes 
 

 ECoul =
3
5

Ze( )2
4πε0R

.   (9.33) 

 
Equation (9.33) shows that the energy needed to counteract the Coulomb interaction is 
proportional to the square of the charge of the nucleus. We also know from equation (9.4) 
that the radius of the nucleus scales with A1 3 , and therefore approximately with Z1 3 . We 
thus see that  
 
 ECoul ∝ Z 5 3.   (9.34) 
 
For a given nucleus, the addition of a proton will increase the nuclear binding energy by a 
fixed amount, but equation (9.34) implies that the Coulomb energy will increase at a 
faster rate. For example, let us assume that  Z 1 and calculate the increase ECoul  as one 
goes from Z  to Z +1  protons 
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ΔECoul ∝ Z +1( )5 3 − Z 5 3

∝ Z 5 3 1+ 1
Z

⎛
⎝⎜

⎞
⎠⎟
5 3

−1
⎡

⎣
⎢

⎤

⎦
⎥

∝ Z 5 3 1+ 5
3Z

⎛
⎝⎜

⎞
⎠⎟ −1

⎡
⎣⎢

⎤
⎦⎥

∝ 5
3
Z 2 3.

  (9.35) 

 
Because the increase in the Coulomb energy gets progressively larger as the number of 
protons increases, and that the corresponding binding nuclear energy gain stays 
approximately constant, there will be a value of Z  where the electrostatic repulsion will 
win over the nuclear force. This will then result in an unstable nuclear configuration. This 
is, indeed what we find in nature as the heaviest stable element is 83

209Bi126 . Any nucleus 
with Z > 83  and A > 209  will decay into lighter nuclei.   
 
Incidentally, this behaviour with increasing proton number provides a qualitative 
explanation for the observed tendency of heavy nuclei to have more neutrons than 
protons. This is one clear way to counteract the electrostatic repulsion by increasing the 
amount of nuclear binding energy. But the nature of nuclear interactions is not that 
simple. The functionality of the total binding energy of a nucleus can be well summarized 
by the so-called liquid drop model of Niels Bohr and Carl F. von Weizsäcker (1912-
2007), which yielded the corresponding semi-empirical formula 
 

 B Z
A XN( ) = aVA − aAA

2 3 − 0.72 Z Z −1( )A−1 3 − aS
N − Z( )2
A

+δ ,   (9.36) 

 
where aV = 15.8 MeV , aA = 18.3 MeV , aS = 23.2 MeV , and 
 

 δ =
+Δ, for even N  and Z
0, for odd A (even/odd N /Z  or vice-versa)
−Δ, for odd N  and Z

⎧

⎨
⎪

⎩
⎪

  (9.37) 

 
with Δ = 33 MeV ⋅A−3 4 . The first term is the volume term that accounts for the fact that 
the total binding energy is proportional to the number of nucleons (i.e. the sum of all 
nuclear interactions), while the second surface effect term reduces the binding energy 
because nucleons on the edge (or outer surface) of the nucleus are “missing” some 
nuclear interactions with non-existing neighbours. The third term is the loss in binding 
that is due to counteracting the Coulomb repulsion between protons. It equals the quantity 
calculated in equation (9.33), with the self-energy of the proton subtracted (since it is 
protons that we are bringing from infinity to build the nucleus; we must therefore remove 
the energy needed to build the protons individually), i.e.,  
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ECoul =

3
5

e2

4πε0R
Z 2 − Z( )

= 3
5

e2

4πε0R
Z Z −1( ).

  (9.38) 

 
Thus the functional form found in equation (9.36). The fourth term is the symmetry term 
and accounts for the experimental fact that nature appears to favour similar numbers of 
protons and neutrons as much as possible. This term is consistent with the Pauli exclusion 
principle, as will become apparent when considering the shell model below. Finally, the 
last term reflects the fact that nuclei are more stable when they possess even numbers of 
protons and neutrons. This is also a function of the Pauli exclusion principle since 
neutrons and protons are fermions, for which only pairs can occupy the same energy state 
(one spin up, the other spin down). Having two like nucleons with parallel spins would 
require for one of them to occupy a higher energy state.   
 
It is therefore apparent from equation (9.36) that one could not simply add more neutrons 
in the hope that the extra binding energy would defeat the Coulomb repulsion. This is 
because the fourth term in the equation would also bring a reduction in binding that 
would eventually negate any benefit in adding neutrons.  
 
The Bohr-von Weizsäcker liquid drop model is not the only model in existence. This 
plurality stems from the fact we still do not fully understand the nature of nuclear forces. 
Another successful interpretation of nuclear data can be obtained from the shell model. 
This model postulates a nuclear potential for the nucleons with energy states that are 
filled in a manner reminiscing of the atomic model discussed in Chapter 8. A schematic 
of the potential well is shown in Figure 3, where we see that protons are less strongly 
bound (with a well depth of 37 MeV) than neutrons (43 MeV) because of the electrostatic 
repulsion. Nuclei are then formed by filling up the energy states to minimize the total 
energy, with all levels below the Fermi energy occupied. 

 

Figure 3 – Nuclear potential 
well for the shell model. 
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We can use this model (with some help from equation (9.36)) to explain, for example, the 
possible nuclear states between 6

12C  and 8
16O , as shown in Figure 4. The 6

12C  nucleus, 
with the lowest 12 levels occupied (six each for the protons and neutrons) will be very 
stable on the account that N = Z  and δ = +Δ ; the total spin is zero. The next stable 
nucleus with the addition of a nucleon can only be 6

13C7  as the next unoccupied level with 
lowest energy is the fourth neutron level; its spin will 1 2  on the account of the unpaired 
neutron. It follows that 7

13N6  cannot be stable. Adding another neutron to get 6
14C8  also 

yields an unstable nucleus since, this time, the number of neutrons is too great for the 
number of protons (eight vs. six) leading to a binding energy deficit from the symmetry 
term in equation (9.36). Instead adding a proton leads to the stable 7

14N  nucleon of spin 1 
(because parallel spins have a lower energy configuration). Filling the next available 
energy state with a neutron gives the stable 7

15N8  isotope of spin 1 2 ; 8
15O7  cannot be 

stable on the account of the excess Coulomb repulsion. Finally, the 8
16O  nucleus (of spin 

zero), with the lowest 16 levels occupied will be very stable for reasons similar to 6
12C . 

 
Given the semi-empirical equation (9.36) for the binding energy, it becomes possible to 
investigate the stability of nuclei by dividing the binding energy by the number of 
nucleons, yielding the binding energy per nucleons. The result is shown in Figure 5. 
There are a few local maxima for particularly stable nuclei such as 2

4He , 6
12C , and 8

16O , 
but perhaps the most important result is the fact that the binding energy per nucleon is 

Figure 4 – Schematic of the filling of energy levels from  to .  
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optimized at approximately A = 56 . This is, among others, the location of 26
56Fe30 , the 

main isotope of iron. It further has important consequences for the production of the 
different elements in the universe, and the evolution of stars. 
 
Exercises   
 
6. Consider the following hypothetical nuclear reaction where 26

56Fe30 , the most stable 
nucleus, interacts with an element of lower atomic mass A1 X1  to produce another nuclide 
of higher mass A2 X2 . First, show that for this reaction to be possible in general there must 
be another nuclide A3 X3  created. We denote the corresponding binding energy per 
nucleon with b1 , b2 , b3 , and bFe . We therefore have A1 + AFe = A2 + A3  (with AFe = 56 ) 
and b1, b2,b3 < bFe . Finally, show that this creation of A2 X2  can only be exothermic if 
A1 X1  is of sufficiently low mass. 
 
Solution. 
 
The conservation of energy for a reaction that produces only A2 X2 , which we assume 
non-relativistic, requires that  
 
 M A1 X1( )c2 + K1 +M 26

56Fe( )c2 + KFe = M
A2 X2( )c2 + K2,   (9.39) 

 
where Ki  stands for the kinetic energy of nucleus i . We now define the following 
quantity           
 

Figure 5 – The binding energy per nucleon as 
a function of the mass number .  
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Q = M A1 X1( ) +M 26

56Fe( )−M A2 X2( )⎡⎣ ⎤⎦c
2

= K2 − K1 + KFe( ).
  (9.40) 

 
It is clear from equation (9.40) that energy is released by the reaction when Q > 0  (the 
reaction is then said to be exothermic), while energy is required for the reaction to take 
place when Q < 0  (the reaction is endothermic). But it is also the case that linear 
momentum must be conserved. If we set ourselves in the reference frame where the iron 
nucleus is at rest (i.e., vFe = 0 ), then it is easy to show that v2 = v1m1 m2  and 
 

 K2 − K1 =
1
2
m1v1

2 M A1 X1( )
M A2 X2( ) −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.   (9.41) 

 
This equation implies that such a reaction can only be exothermic if m1 > m2 , which is of 
course impossible if only one nucleus is created as a product. As we will see later the 
fusion of two nuclei can often release a large amount of energy. We therefore conclude 
that there must be a second nucleus created at the output of this reaction, and replace 
equation (9.40) with 
 

 
Q = M A1 X1( ) +M 26

56Fe( )−M A2 X2( )−M A3 X3( )⎡⎣ ⎤⎦c
2

= K2 + K3 − K1 + KFe( ).
  (9.42)    

 
We can approximately write for the total binding energies (see equation (9.14)) 
 

 

 

A1b1  A1u −M
A1 X1( )⎡⎣ ⎤⎦c

2

A2b2  A2u −M
A2 X2( )⎡⎣ ⎤⎦c

2

A3b3  A3u −M
A3 X3( )⎡⎣ ⎤⎦c

2

AFebFe  AFeu −M 26
56Fe( )⎡⎣ ⎤⎦c

2,

  (9.43) 

 
which after insertion into equation (9.40) yields 
 

 
 

Q  A1 + AFe − A2 − A3( )uc2 − A1b1 + AFebFe − A2b2 − A3b3( )
 A2b2 + A3b3( )− A1b1 + AFebFe( ),

  (9.44) 

 
since A1 + AFe = A2 + A3 . Because we assume that A2 > AFe  it must be that AFe > A1 > A3 . 
If we now refer to Figure 5, then we find that we will most likely have b3 < b1 < b2 < bFe .  
 
Probably the first important thing to notice with equation (9.44) is that this reaction 
cannot be exothermic when A1 = AFe , since we would also have  b1  bFe > b2, b3  and 
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A2 + A3 = 2AFe . We thus find that it is impossible to fuse two iron nuclei in an exothermic 
reaction to obtain a heavier nuclide. That is, if iron is formed through nucleosynthesis in 
stars, then there must be another type of reaction taking place. This is because the 
creation of elements heavier than iron from iron only would cool down the star (i.e., 
Q < 0 ) and halt nuclear reactions. We can also reasonably expect a similar result when 

 
A1<AFe .    

 
Let us now rewrite equation (9.44) as follows 
 
  Q  A2b2 − AFebFe( )− A1b1 − A3b3( )   (9.45) 
 
and assume that  A1  AFe . We find that A3 < A1  and, referring to Figure 5, b3 < b1  when 
A2 > AFe . This implies that both terms in parentheses on the right-hand side of equation 
(9.45) are positive since 

 
b2 <bFe . It follows that the reaction will be exothermic whenever 

 
 A2b2 − AFebFe > A1b1 − A3b3.   (9.46) 
 
To see if this is possible, let us write 
 

 
A1 = A3 + ΔA, b1 = b3 + Δb1
A2 = AFe + ΔA, b2 = bFe − Δb2

  (9.47) 

 
with Δb1 >Δb2 > 0  (see Figure 5), and keep calculation to first order such that equation 
(9.45) becomes 
 
  Q  ΔA bFe − b3( )− AFeΔb2 + A3Δb1( ).   (9.48) 
 
Going to the limit where A1  is so small (i.e., a few nucleons) that  Δb2  0 , as well as 
considering that  bFe  b3 , we find  
 

 
 

Q ≈ ΔAbFe − A3Δb1
>

0   (9.49) 

    
whenever bFe b1 > A3 ΔA . Although there were several approximations and assumptions 
leading to equation (9.49), this result nonetheless opens the possibility that, at least when 
based solely on conservations of energy and linear momentum considerations, it could be 
possible to exothermically produce elements heavier than iron by fusing it with light 
elements. In fact, it is known that stars can successively build heavy elements (i.e., more 
massive than iron) through the so-called neutron capture process. This is somewhat 
equivalent to setting A1 X1 = n  in our previous analysis, but in this process the new heavier 
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nucleus is born into an excited state before eventually decaying to its ground state (see 
Section 9.5.2.4 below).      

9.5 Radioactive Decay  
We know from our previous discussion that nuclides that have a binding energy B < 0  
for any form of disintegration into a by-product are deemed unstable. There are several 
modes of decay, some of which will be studied in the remaining parts of this chapter. 
However, all modes obey the same type of decay law. First, given a sample of radioactive 
material the rate of decays per unit time, which we define as the activity R , is defined by 
 

 R = −
dN t( )
dt

,   (9.50) 

 
with N t( )  the number of nuclides in the sample at a particular time. The SI unit for 
radioactive activity is the Becquerel (1 Be = 1 decay/s ), after Henri Becquerel (1852-
1908) an early discoverer of radioactivity with Marie (née Sklodowska, 1867-1934) and 
Pierre Curie (1859-1906), for whom another such unit exists (i.e., the curie, 
1 Ci = 3.7 ×104  decays/s ).  
 
Equation (9.50) leads to a simple decay law if the activity is proportional to the number 
of nuclides. More precisely, if we write 
 
 R = λN t( ),   (9.51) 
 
with λ  the decay constant, then we have from equation (9.50) 
 

 
dN t( ) = −Rdt

= −λN t( )dt.
  (9.52) 

 
This first-order differential equation is readily solved as follows 
 

 dN t( )
N t( ) = −λdt,   (9.53) 

 
which after integration yields  
 
 ln N t( )⎡⎣ ⎤⎦ = −λt +C   (9.54) 
 
or 
 
 N t( ) = N0e

−λt ,   (9.55) 
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where N0  is the number of nuclides at t = 0  (it also arises in the solution from the 
constant of integration C = ln N0( ) ). Equation (9.55) is the so-called radioactive decay 
law, whose exponential nature is verified experimentally. It is often characterized by the 
half-life t1 2 , defined as the time it takes for the number of nuclides to become half the 

initial value (i.e., N t1 2( ) = N0 2 ). It is easily calculated from equation (9.55) that 
 

 

 

t1 2 =
ln 2( )
λ


0.693
λ

.
  (9.56) 

 
Alternatively, the mean or average lifetime τ  is often used, and is determined with 
 

 

τ =
N0 te−λt dt

0

∞

∫
N0 e−λt dt

0

∞

∫
= − t

λ
e−λt

0

∞

+ 1
λ

e−λt dt
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟
e−λt dt

0

∞

∫ ,

  (9.57) 

 
or, finally, 
 

 
τ = 1

λ

=
t1 2
ln 2( ) .

  (9.58) 

 
The half-lives (or lifetimes) of nuclides vary greatly, from less than 10−6s  to several 
billions years. 

9.5.1 Alpha Decay    
We now discuss one of the three common modes of radioactive decay, alpha decay (the 
other two are beta and gamma decay, which will follow). All of these decay process 
require the conservation of energy, linear and angular momenta, electric charge, and the 
conservation of nucleons. That is, this (new) law states that the total number of nucleons 
A  must be conserved in a low-energy (i.e., approximately less than the mass of a 
nucleon, 398 MeV) nuclear reaction or decay. 
 
As its name indicates, alpha decay involves the disintegration of a nucleus where one of 
the one of the products is an alpha particle, i.e., a 4He  core. The radioactive nucleus, say, 
Z
A X , is called the parent nuclide and two or more products can result from the 
disintegration process; the heaviest of the product particles is called the daughter. We 
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now introduce the disintegration energy Q , which is the negative of the binding energy 
of equation (9.23) (and not unrelated to the quantity introduced in equation (9.40)), 
defined with 
 

 M Z
A X( ) = MD +My +

Q
c2
,   (9.59) 

   
or 
 
 Q = M Z

A XN( )−MD −My⎡⎣ ⎤⎦c
2   (9.60) 

 
for a disintegration into a daughter of mass MD  and one more lighter nuclide of mass 
My . We find that a nucleus is unstable for Q > 0 , i.e., the sum of the mass of the 
products is less than that of the parent. This is to be contrasted with the fact that a stable 
nucleus has B > 0  (and therefore Q < 0 ). 
 
As mentioned above, for alpha decay the radioactive process will emit a 4He  nucleus of 
binding energy B 4 He( ) = 28.3 MeV . This type of reaction is written as  
 
 Z

A X→ Z−2
A−4D +α   (9.61) 

 
and 
 
 Q = M Z

A X( )−M Z−2
A−4D( )−M 4He( )⎡⎣ ⎤⎦c

2,   (9.62) 

 
with Q > 0  for the reaction to be possible. It is found that many of the nuclei with 
A >150  are susceptible to alpha decay. The high level of Coulomb interaction for these 
nuclides (see equation (9.36)) makes them good candidates for the ejections of nucleons, 
while the high stability of 4He  makes it a likely aggregate for a small number of 
nucleons. Radioactive decay in an alpha particle is therefore a favoured outcome. 
 
Exercises    
 
7. Verify if the uranium nucleus 92

230U  can alpha decay into thorium 90
226 Th . 

 
Solution. 
 
The reaction in this case is 
 
 92

230U→ 90
226Th +α   (9.63) 

  
with 
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Q = M 92
230 U( )−M 90

226 Th( )−M 4 He( )⎡⎣ ⎤⎦c
2

= 230.033927 u − 226.024891 u − 4.002603 u( )c2 931.5 MeV
c2u

⎛
⎝⎜

⎞
⎠⎟

= 6.0 MeV.

  (9.64) 

 
The alpha decay of 92

230U  is then possible since Q > 0 . 

9.5.2 Beta Decay 
Although alpha decay results from the instability of a nucleus, it is a fact that the created 
daughter nuclide is also often less stable than its parent. But stability can sometimes incur 
by simply adding or removing a charge to or from the daughter nucleus (i.e., with the 
following changes Z = Z ±1  and  N = N 1). If the number of nucleons A  is to remain 
constant in the process, then this change in the charge number can be accomplished by 
the creation or annihilation of an electron or its antiparticle, the positron. 
 
It was originally experimentally observed that negatively charged particles, the so-called 
β−  particle (now known to be electrons) were produced in some radioactive decays. 
However, there was a problem with the energy spectrum characterizing these electrons. 
For example, the decay of the unstable 14C  isotope into the stable 14N  should have 
yielded an electron with a well-defined kinetic energy, but it was generally found that the 
electron had significantly less energy. Furthermore, the 14C  nucleus has a zero spin, 
while the main isotope of nitrogen has a spin of one. Because the electron has a spin of 
1 2  it is not possible to combine it with the spin of nitrogen to account for that of 14C  
(i.e., the combination of the nitrogen and electron spins, let us call it S , can only span the 
1−1 2 ≤ S ≤ 1+1 2  range, which does not include zero). Pauli proposed the way out of 
this problem in 1930 when he postulated the existence of a yet undetected particle, also of 
spin 1 2 . This particle, the neutrino, would carry the kinetic energy apparently missing 
by the electron and would solve the intrinsic angular momentum problem by having a 
spin of 1 2 . To conserve electric charge the neutrino must also be neutral. It has only 
recently been shown experimentally that it possesses a non-zero mass, albeit extremely 
small (it has yet to be precisely measured). Neutrinos are also not affected by the strong 
nuclear force responsible for the binding of nuclei. The beta decay is the result of the so-
called weak nuclear force or interaction.      

9.5.2.1 The β −  Decay 

The β−  decay involves an electron and an antineutrino, the antiparticle of the neutrino. 
The simplest such decay is that of the neutron into a proton through 
 
 n→ p + β− +ν ,   (9.65) 
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where ν  is the antineutrino (ν  is the neutrino). More generally, the β−  decay of the Z
A X  

nuclide is written as 
 
 Z

A X→ Z+1
A D + β− +ν ,   (9.66) 

 
with the disintegration energy 
 
 Q = M Z

A X( )−M Z+1
A D( )⎡⎣ ⎤⎦c

2.   (9.67) 

 
A β−  decay will only happen when Q > 0 . For example, the aforementioned 14C  decay  
 
 14C→ 14N + β− +ν   (9.68) 
   
yields Q = 156.5 keV .  

9.5.2.2 The β +  Decay 

The β +  decay process is similar to the β−  decay with the differences that it involves the 
creation of a positron and a neutrino. The general reaction is 
 
 Z

A X→ Z−1
A D + β + +ν ,   (9.69) 

 
where it is seen that the daughter nuclide looses a positive charge, while the 
disintegration energy is 
 
 Q = M Z

A X( )−M Z−1
A D( )− 2me⎡⎣ ⎤⎦c

2.   (9.70) 

 
The presence of twice the electron mass is required on the right-hand side to account for 
the fact that equation (9.70), like equation (9.67), uses atomic masses (i.e., not nuclear 
masses). An example of a β +  decay is the disintegration of 14O  into 14N  through 
 
 14O→ 14N + β + +ν ,   (9.71) 
 
which yields Q = 4.1 MeV .  

9.5.2.3 Electron Capture 
There is another way for nuclei to loose the equivalent of a positive charge. It is actually 
achieved by acquiring an electron; this process is thus called electron capture. This 
reaction is mainly important for inner K- and L-shell electrons, which have a finite 
probability of being found in the atomic nucleus and therefore being captured by it (see 
Exercise 1 in this chapter). The general reaction is written as 
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 Z
A X + e− → Z−1

A D +ν ,   (9.72) 
 
with 
 
 Q = M Z

A X( )−M Z−1
A D( )⎡⎣ ⎤⎦c

2.   (9.73) 

9.5.2.4 Gamma Decay 
The last type of nuclear decay we consider is similar in nature to the transitions between 
stationary states resulting in the emission of photons by atoms. Just like atoms, nuclei can 
be excited to energy levels higher than their ground state. As these excited states have 
finite lifetimes (although they can sometimes be very long lived) they will eventually 
decay to lower energy states and emit gamma ray photons in the process; hence the name 
gamma decay. The gamma ray photons can have energy ranging from several keV to a 
few MeV.  
 
The general decay from an excited state A X∗  of energy E>  (the ‘ ∗ ’ denotes an excited 
state) to one of lower energy E<  is represented by 
 
 A X∗ E>( )→ AX∗ E<( ) + γ .   (9.74) 
 
A decay to the ground state is simply written as 
 
 A X∗ → AX + γ .   (9.75) 
 
Just as atoms can be spectrally identified through the photons emitted as a result of 
electronic transitions, nuclei can also be identified through gamma decay photons. An 

Figure 6 – Alpha and gamma 
decay processes for the reaction 

.  
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example of alpha and gamma decay processes leading to the creation of the 90
226 Th  

nuclide from 92
230U  is shown in Figure 6. It is seen that the parent nuclide can alpha decay 

to the ground state or other low-energy excited states of the daughter nucleus. In the latter 
case, 90

226 Th  will decay to its ground state through the emission of a gamma ray photon.   

9.6 Nuclear Reactions   
We have so far mainly discussed the stability or instability of a nucleus by considering its 
binding energy B  and disintegration energy Q  in relation to different hypothetical 
rearrangements of its nucleons into different nuclei. The only exceptions to this are 
Exercise 2 on photonuclear reaction, and Exercise 6 on the production of nuclides heavier 
than iron from its fusion with a lighter nucleus. These processes are examples of nuclear 
reactions, more broadly defined when two nuclei interact and undergo a transmutation 
into a different set of final nuclides. A nuclear reaction could, in principle, involve the 
interaction of more than two nuclei. However, the probability of occurrence for a 
collision involving more than two partners is so low that this possibility can generally 
safely be neglected. We should also add that changes due to nuclear reactions are, in 
some sense, induced or forced on a nucleus and are therefore different in nature to the 
radioactive decays previously discussed. That is, a radioactive decay process does not 
constitute a nuclear reaction. 
 
Perhaps the first such reaction ever observed was performed in Ernest Rutherford’s 
laboratory in 1919. This reaction consisted of the bombardment of stationary 7

14N  nuclei 
with alpha particles resulting in the following product 
 
 α + 7

14N→ p + 8
17O.   (9.76) 

 
It is generally understood that the first and second particles on the left are, respectively, 
the projectile and target, while on the right the detected particle is listed first and the 
residual nucleus last. Alternatively, equation (9.76) and nuclear reaction in general can be 
written using a more compact notation as follows 
 
 7

14N α , p( ) 817O.   (9.77) 
     
Going back to the discussion found in Exercise 6 we can calculate 
 

 

Q = M 4 He( ) +M 7
14 N( )−mp −M 8

15 O( )⎡⎣ ⎤⎦c
2

= 4.002603 u +14.003074 u −1.007825 u −16.999132 u( )c2 931.5 MeV
c2u

⎛
⎝⎜

⎞
⎠⎟

= −1.2 MeV.

 (9.78) 
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Since Q  is also equal to the difference between the kinetic energy of the products and 
that of the projectile and target (see equation (9.40)), we then find that this reaction can 
only happen because energy was expanded in the process. 

9.6.1 Fission 
Nuclear fission is a process into which a nucleus separates into two fission fragments. 
Although spontaneous fission, where a heavy nucleus ( Z 2 A ≥ 49 ) spontaneously 
separate into two fission fragments without being aided by its interaction with a 
projectile, can in principal occur in nature, it is found that the corresponding lifetimes are 
several orders of magnitude greater than those associated to alpha decay.  
 
More important to our discussion is induced fission, where a heavy nucleus splits after 
interacting with a projectile. The following is an example of such a reaction  
 
 n + 92

235U→ 40
99Zr + 52

134Te + 3n.  (9.79) 
 
It is generally the case that one of the two fission fragments is significantly heavier than 
the other, in a manner consistent with the present case. If we once again calculate the 
quantity Q  we find 
 

 

Q = mn +M 92
235 U( )−M 40

99 Zr( )−M 52
134 Te( )− 3mn⎡⎣ ⎤⎦c

2

= 235.0439 u − 98.9165 u −133.9115 u − 2 ⋅1.008665 u( )c2 931.5 MeV
c2u

⎛
⎝⎜

⎞
⎠⎟

= 185 MeV.

 (9.80) 

 
The positive value obtained for Q  implies that energy is liberated, or gained, by this 
nuclear reaction. In other words, referring to the result obtained in Exercise 6, although 
92
235U  is heavier than 26

56Fe  and could therefore not be combined with a projectile to form a 
heavier nucleus without inputting energy in the reaction, it can fission and produce 
energy in the process. 
 
Finally, the following three facts can also be observed in this example of nuclear fission. 
First, the amount of energy generated per nucleon (or by mass) is on the order of 1 MeV, 
or, more precisely,  ≈185 MeV 236  0.8 MeV  per nucleon. This is an important amount 
of energy, which we will eventually compare with that resulting from the nuclear fusion 
process to be discussed below. Second, the reaction necessitates one neutron to be 
initiated but also liberates three neutrons as a product. This paves the way to the 
establishing of a chain reaction of fission events, which can eventually lead to a 
catastrophic release of energy (the atomic bomb dropped on Hiroshima at the end of the 
World War II used, indeed, 92

235U  as nuclear fuel). Finally, one of the fragments, i.e., 

52
134 Te , is unstable and will radioactively β−  decay. That is, the nuclear fission of 92

235U  
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leaves behind radioactive products (or waste), which can liberate significant amounts of 
energy and be harmful to human when exposed to it, even after the reaction has ceased.    

9.6.2 Fusion    
The nuclear fission process discussed above could be described as the destruction of a 
heavy target nucleus into lighter fragments nuclei. The inverse process is that of nuclear 
fusion, where lighter nuclei are combined to yield a heavier one. The Rutherford reaction 
of equation (9.76) can be considered as such a fusion process, but we see, however, that 
energy is needed to create the less naturally abundant, stable 8

17O  nucleus from the highly 
stable 7

14N . But not all fusion reactions are endothermic. In fact, the following basic 
reaction using two isotopes of hydrogen 
 
 2H + 3H→ n + 4He   (9.81) 
 
produces a significant amount of energy with Q = 17.6 MeV . This represents a release of 
approximately 3.5 MeV per nucleon, more than four times that attained through nuclear 
fission (see equation (9.80) and the discussion that follows). This higher energy 
throughput is characteristic of the fusion process when compared to fission. This is traced 
to the fact that the binding energy per nucleon increases much more drastically as we go 
from lighter nuclei to A = 56  on the left part of the curve in Figure 5, than from the 
heavy elements on the right to A = 56 . That is, a lot more energy (per unit mass) is 
gained by merging light nuclei than by separating heavy nuclei. 
 
Besides the lightest nuclei, which are believed to have form shortly after the Big Bang 
(e.g., hydrogen and helium), most heavy elements (no heavier than iron) are formed in 
stars through the fusion process. The most basic reaction is the so-called proton-proton 
chain that accounts for the creation of 4He  as follows 
 

 

1H + 1H→ 2H + β + +ν
2H + 1H→ 3He + γ

3He + 3He→ 4He +1 H + 1H.
  (9.82) 

 
This series of fusion uses a net number of four protons to form an alpha particle, while 
generating 26.2 MeV. Three alpha particles can eventually be successively fused to create 
carbon (i.e., 12C ), and open the way to the CNO cycle 
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1H + 12C→ 13N + γ
13N→ 13C+ β + +ν

1H + 13C→ 14N + γ
1H + 14N→ 15O+ γ

15O→ 15N + β + +ν
1H + 15N→ 12C+ 4He.

  (9.83) 

 
It is thus seen that 12C  merely serves as a catalyst to transmute four protons into one 
alpha particle, and generate 26.7 MeV in the process. The American-Austrian physicist 
Hans Bethe (1906-2005) convincingly showed that the proton-proton chain and the CNO 
cycle are responsible for the generation of energy in stars.      
 
   
 
 


